In this work we obtain results related to the approximation of $h$-dimensional dominant subspaces and low rank approximations of matrices $\mathbf A\in\mathbb K^{m\times n}$ (where $\mathbb K=\mathbb R$ or $\mathbb C)$ in case there is no singular gap, i.e. if $\sigma_h=\sigma_{h+1}$ (where $\sigma_1\geq \ldots\geq \sigma_p\geq 0$ denote the singular values of $\mathbf A$, and $p=\min\{m,n\}$). In order to do this, we describe in a convenient way the class of $h$-dimensional right (respectively left) dominant subspaces. Then, we show that starting with a matrix $\mathbf X\in\mathbb K^{n\times r}$ with $r\geq h$ satisfying a compatibility assumption with some $h$-dimensional right dominant subspace, block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on approximation of structural left dominant subspaces; but instead of exploiting a singular gap at $h$ (which is zero in this case) we exploit the nearest existing singular gaps.
翻译:在这项工作中,如果不存在奇差,即如果美元=gmath_h\\\\\\\gmath\\\h\h+1}美元(美元=geq$_1\geq\ldges\geq\geq=0美元)的近似值和基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基基基基基基基基基底基底基底基底基底基底基底基基基基底基底基底基底基基基基基基基基基底基底基基基基基底基底基底基基基基基基底基底基底基基基基基基基基基基基底基底基基基基基底基底基底基底基底基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基,我们基基基基基基基基基基基基基基基基基基底基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基