We consider the problem of resolving $ r$ point sources from $n$ samples at the low end of the spectrum when point spread functions (PSFs) are not known. Assuming that the spectrum samples of the PSFs lie in low dimensional subspace (let $s$ denote the dimension), this problem can be reformulated as a matrix recovery problem, followed by location estimation. By exploiting the low rank structure of the vectorized Hankel matrix associated with the target matrix, a convex approach called Vectorized Hankel Lift is proposed for the matrix recovery. It is shown that $n\gtrsim rs\log^4 n$ samples are sufficient for Vectorized Hankel Lift to achieve the exact recovery. For the location retrieval from the matrix, applying the single snapshot MUSIC method within the vectorized Hankel lift framework corresponds to the spatial smoothing technique proposed to improve the performance of the MMV MUSIC for the direction-of-arrival (DOA) estimation.


翻译:我们认为,如果分差函数(PSFs)的频谱样本位于低维次空间(用美元表示维度),那么问题可以重新表述为矩阵恢复问题,然后是位置估计。通过利用与目标矩阵相关的矢量式汉克尔矩阵的低等级结构,提议在矩阵恢复中采用一种称为矢量式汉克尔升降的混凝土方法。据显示,用美元计数式汉克尔升降的样本足以实现准确的回收。对于从矩阵中检索位置,在矢量式汉克尔升降框架内采用单一快照 MUSIC 方法,与拟议用于改进MMMM MM MM MSCE 向地(DOA)估算的空间平滑技术相匹配。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
专知会员服务
47+阅读 · 2021年4月15日
专知会员服务
22+阅读 · 2021年4月10日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Top
微信扫码咨询专知VIP会员