In the MAXSPACE problem, given a set of ads A, one wants to schedule a subset A' of A into K slots B_1, ..., B_K of size L. Each ad A_i in A has a size s_i and a frequency w_i. A schedule is feasible if the total size of ads in any slot is at most L, and each ad A_i in A' appears in exactly w_i slots. The goal is to find a feasible schedule that maximizes the sum of the space occupied by all slots. We introduce a generalization called MAXSPACE-R in which each ad A_i also has a release date r_i >= 1, and may only appear in a slot B_j with j >= r_i. We also introduce a generalization of MAXSPACE-R called MAXSPACE-RD in which each ad A_i also has a deadline d_i <= K, and may only appear in a slot B_j with r_i <= j <= d_i. These parameters model situations where a subset of ads corresponds to a commercial campaign with an announcement date that may expire after some defined period. We present a 1/9-approximation algorithm for MAXSPACE-R and a polynomial-time approximation scheme for MAXSPACE-RD when K is bounded by a constant. This is the best factor one can expect, since MAXSPACE is strongly NP-hard, even if K = 2.
翻译:在MAX SPACE问题中,如果有一套AA广告,人们想要将A的子AA' 排入K 槽 B_1,...,...,., B_K 大小L., 大小L.,............. A........... A....................................