Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying out modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper we address the computational complexity of the associated graph optimisation problem. We demonstrate that this problem cannot be solved in polynomial time unless P = NP; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem in polynomial time in restricted settings. The first of these utilises dynamic programming on a tree decomposition, and runs in polynomial time if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but is an FPT algorithm when the maximum number of edges that can be removed is taken as the parameter.


翻译:Lee、Meeks和Pettersson(Stat.comput. 2021)最近证明,通过修改一个代表空间相关性的图表,可以改进对纯单位计数数据的推论;具体地说,它们删除来自地理区域间边界共享的平面图边缘,以便最大限度地实现一个特定的目标功能。在本文件中,我们处理相关图形优化问题的计算复杂性。我们证明,除非P=NP,否则这个问题不可能在多元时间解决。我们进一步显示,问题的两个更简单的变种是不可吸引的。我们用两种参数化的算法来跟踪这些结果,这些算法完全解决了限制环境下的多元时间的问题。这些算法首先在树分解状态上使用动态程序,如果树边和最大程度都受约束,则在多元时间运行。第二种算法限于最多为三度的问题情形,例如平面三角可能发生的问题,但当可以去除最大边缘的参数时,则是一种FPTT算法。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
9+阅读 · 2017年10月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月24日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
9+阅读 · 2017年10月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员