We investigate the properties of a sequential Monte Carlo method where the particle weight that appears in the algorithm is estimated by a positive, unbiased estimator. We present broadly-applicable convergence results, including a central limit theorem, and we discuss their relevance for applications in statistical physics. Using these results, we show that the resampling step reduces the impact of the randomness of the weights on the asymptotic variance of the estimator. In addition, we explore the limits of convergence of the sequential Monte Carlo method, with a focus on almost sure convergence. We construct an example algorithm where we can prove convergence in probability, but which does not converge almost surely, even in the non-random-weight case.
翻译:我们调查一个连续的蒙特卡洛方法的特性,其中算法中出现的粒子重量是由一个正的、公正的估测者估算的。我们提出了广泛适用的趋同结果,包括一个中心限理,我们讨论了这些结果与统计物理应用的相关性。我们利用这些结果表明,抽取步骤减少了加权随机性对估测器无症状差异的影响。此外,我们探索了顺序的蒙特卡洛方法的趋同限度,重点是几乎肯定的趋同。我们构建了一个实例算法,我们可以证明这些结果与统计物理应用的趋同概率一致,但即使非随机加权,也几乎无法肯定地汇合在一起。