In this work, we consider the hydrogen atom confined inside a penetrable spherical potential. The confining potential is described by an inverted-Gaussian function of depth $\omega_0$, width $\sigma$ and centered at $r_c$. In particular, this model has been used to study atoms inside a $C_{60}$ fullerene. For the lowest values of angular momentum $l=0,1,2$, the spectra of the system as a function of the parameters ($\omega_0,\sigma,r_c$) is calculated using three distinct numerical methods: (i) Lagrange-mesh method, (ii) fourth order finite differences and (iii) the finite element method. Concrete results with not less than 11 significant figures are displayed. Also, within the Lagrange-mesh approach the corresponding eigenfunctions and the expectation value of $r$ for the first six states of $s, p$ and $d$ symmetries, respectively, are presented. Our accurate energies are taken as initial data to train an artificial neural network as well. It generates an efficient numerical interpolation. The present numerical results improve and extend those reported in the literature.
翻译:在这项工作中,我们考虑将氢原子局限在可渗透球形潜力中。 限制潜能由以下三种不同的数值函数来描述:(i) Lagrange-mesh方法,(ii) 第四顺序定值差异和(iii) 限定元素方法。 具体结果不少于11个重要数字的显示。 另外,在拉格兰特-mesh 方法中,相应的天体和预期值分别为美元、 p美元和 美元等前六种状态的美元,分别是美元、 p美元和 美元等参数的函数。 我们的精确能量被作为初始数据,用于培训一个高效的数值网络,作为数字网络的扩展。