Rain streaks bring serious blurring and visual quality degradation, which often vary in size, direction and density. Current CNN-based methods achieve encouraging performance, while are limited to depict rain characteristics and recover image details in the poor visibility environment. To address these issues, we present a Multi-scale Hourglass Hierarchical Fusion Network (MH2F-Net) in end-to-end manner, to exactly captures rain streak features with multi-scale extraction, hierarchical distillation and information aggregation. For better extracting the features, a novel Multi-scale Hourglass Extraction Block (MHEB) is proposed to get local and global features across different scales through down- and up-sample process. Besides, a Hierarchical Attentive Distillation Block (HADB) then employs the dual attention feature responses to adaptively recalibrate the hierarchical features and eliminate the redundant ones. Further, we introduce a Residual Projected Feature Fusion (RPFF) strategy to progressively discriminate feature learning and aggregate different features instead of directly concatenating or adding. Extensive experiments on both synthetic and real rainy datasets demonstrate the effectiveness of the designed MH2F-Net by comparing with recent state-of-the-art deraining algorithms. Our source code will be available on the GitHub: https://github.com/cxtalk/MH2F-Net.
翻译:以CNN为基础的当前方法取得了令人鼓舞的业绩,但仅限于描述降雨特征和在低可见度环境中恢复图像细节。为了解决这些问题,我们以端对端的方式展示了一个多尺度的高玻璃分层融合网络(MH2F-Net),以精确地捕捉以多尺度提取、分层蒸馏和信息汇总方式显示的雨量特征。为了更好地提取这些特征,提议了一个新型多尺度的多级玻璃抽取区块(MHEB),以通过下层和上层的抽样程序在不同规模上取得本地和全球特征。此外,一个高层次的强化蒸馏区(HADADAD)随后采用双重关注特征来适应性调整等级特征并消除冗余部分。此外,我们引入了一种残留预测的特质熔化(RPFF)战略,以逐步区分特征学习和综合不同特征,而不是直接配置或添加。对合成和真实的实时数据集成进行广泛的实验,以合成和实时数据集成方式将最新设计MH2F的MF码比我们设计的MHF源码/GiF系统。