Artificial neural networks have revolutionized machine learning in recent years, but a complete theoretical framework for their learning process is still lacking. Substantial advances were achieved for wide networks, within two disparate theoretical frameworks: the Neural Tangent Kernel (NTK), which assumes linearized gradient descent dynamics, and the Bayesian Neural Network Gaussian Process (NNGP). We unify these two theories using gradient descent learning with an additional noise in an ensemble of wide deep networks. We construct an analytical theory for the network input-output function and introduce a new time-dependent Neural Dynamical Kernel (NDK) from which both NTK and NNGP kernels are derived. We identify two learning phases: a gradient-driven learning phase, dominated by loss minimization, in which the time scale is governed by the initialization variance. It is followed by a slow diffusive learning stage, where the parameters sample the solution space, with a time constant decided by the noise and the Bayesian prior variance. The two variance parameters strongly affect the performance in the two regimes, especially in sigmoidal neurons. In contrast to the exponential convergence of the mean predictor in the initial phase, the convergence to the equilibrium is more complex and may behave nonmonotonically. By characterizing the diffusive phase, our work sheds light on representational drift in the brain, explaining how neural activity changes continuously without degrading performance, either by ongoing gradient signals that synchronize the drifts of different synapses or by architectural biases that generate task-relevant information that is robust against the drift process. This work closes the gap between the NTK and NNGP theories, providing a comprehensive framework for the learning process of deep wide neural networks and for analyzing dynamics in biological circuits.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员