The proliferation of fake news has become a significant concern in recent times due to its potential to spread misinformation and manipulate public opinion. In this paper, we present a comprehensive study on the detection of fake news in Brazilian Portuguese, focusing on journalistic-type news. We propose a machine learning-based approach that leverages natural language processing techniques, including TF-IDF and Word2Vec, to extract features from textual data. We evaluate the performance of various classification algorithms, such as logistic regression, support vector machine, random forest, AdaBoost, and LightGBM, on a dataset containing both true and fake news articles. The proposed approach achieves a high level of accuracy and F1-Score, demonstrating its effectiveness in identifying fake news. Additionally, we develop a user-friendly web platform, FAKENEWSBR.COM, to facilitate the verification of news articles' veracity. Our platform provides real-time analysis, allowing users to assess the likelihood of news articles being fake. Through empirical analysis and comparative studies, we demonstrate the potential of our approach to contribute to the fight against the spread of fake news and promote more informed media consumption.
翻译:暂无翻译