In hedonic games, players form coalitions based on individual preferences over the group of players they could belong to. Several concepts to describe the stability of coalition structures in a game have been proposed and analysed in the literature. However, prior research focuses on algorithms with time complexity that is at least linear in the input size. In the light of very large games that arise from, e.g., social networks and advertising, we initiate the study of sublinear time property testing algorithms for existence and verification problems under several notions of coalition stability in a model of hedonic games represented by graphs with bounded degree. In graph property testing, one shall decide whether a given input has a property (e.g., a game admits a stable coalition structure) or is far from it, i.e., one has to modify at least an $\epsilon$-fraction of the input (e.g., the game's preferences) to make it have the property. In particular, we consider verification of perfection, individual rationality, Nash stability, (contractual) individual stability, and core stability. While there is always a Nash-stable coalition structure (which also implies individually stable coalitions), we show that the existence of a perfect coalition structure is not tautological but can be tested. All our testers have one-sided error and time complexity that is independent of the input size.


翻译:在超音速游戏中,玩家根据个人偏好而形成联盟,以他们可以属于的玩家群体为基础。 文献中已经提出并分析了描述游戏中联盟结构稳定性的若干概念。 然而, 先前的研究侧重于具有时间复杂性的算法, 其输入大小至少线性。 鉴于由社会网络和广告等极大型游戏产生的游戏, 我们开始研究子线性时间属性测试算法, 其存在和核查问题。 特别是, 我们考虑在以约束程度的图表为代表的联盟游戏模式中, 校验完美、 个人理性、 纳什稳定性、 个人稳定性和核心稳定性。 在图形属性测试中, 人们应该决定给定的投入是否具有属性( 例如, 游戏接受稳定的联盟结构) 或离它很远的算法, 也就是说, 人们必须至少修改投入( 例如游戏的偏差) $\clon- 的折射法, 以使输入结构具有属性。 特别是, 我们考虑验证完美、 个人理性、 纳什 稳定性、 ( 合同) 个人稳定性和核心稳定性 稳定性 。 虽然总是存在一个稳定的纳什级联盟结构, 但是, 我们的测试一个完整的联盟结构是稳定的, 也意味着一个稳定的, 是一个稳定的, 测试的精确的联盟是稳定的, 。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
45+阅读 · 2020年10月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月28日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
45+阅读 · 2020年10月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员