This paper studies the problem of finding the exact ranking from noisy comparisons. A comparison over a set of $m$ items produces a noisy outcome about the most preferred item, and reveals some information about the ranking. By repeatedly and adaptively choosing items to compare, we want to fully rank the items with a certain confidence, and use as few comparisons as possible. Different from most previous works, in this paper, we have three main novelties: (i) compared to prior works, our upper bounds (algorithms) and lower bounds on the sample complexity (aka number of comparisons) require the minimal assumptions on the instances, and are not restricted to specific models; (ii) we give lower bounds and upper bounds on instances with unequal noise levels; and (iii) this paper aims at the exact ranking without knowledge on the instances, while most of the previous works either focus on approximate rankings or study exact ranking but require prior knowledge. We first derive lower bounds for pairwise ranking (i.e., compare two items each time), and then propose (nearly) optimal pairwise ranking algorithms. We further make extensions to listwise ranking (i.e., comparing multiple items each time). Numerical results also show our improvements against the state of the art.
翻译:本文研究了从繁杂的比较中找到准确的排名的问题。 比较一组美元项目后, 最喜欢的项目会产生噪音结果, 并揭示了一些排名信息 。 通过反复和适应性地选择要比较的项目, 我们希望以一定的自信对项目进行完全排序, 并尽可能少地使用比较。 与大多数先前的作品不同, 在本文中, 我们有三个主要的新颖之处 : (一) 与先前的作品相比, 我们的上界( algorithms) 和样品复杂性的下界( 数的比较) 要求对实例进行最起码的假设, 并且不局限于特定的模型 ;(二) 我们给出不平等的噪音水平的下界和上界; 和 (三) 本文的目标是在不知情的情况下对项目进行准确的排序, 而大多数前项要么侧重于大致的排序, 要么研究准确的排名, 但需要事先的知识。 我们首先得出对齐排序的下界( 即每次比较两个项目), 然后提出( ) 最佳的对齐排序算法 ; ( ) 我们进一步扩展到列表的顺序, (i. 比较每个项目的多时间) 。