Unsupervised Domain Adaptation (UDA) is a key issue in visual recognition, as it allows to bridge different visual domains enabling robust performances in the real world. To date, all proposed approaches rely on human expertise to manually adapt a given UDA method (e.g. DANN) to a specific backbone architecture (e.g. ResNet). This dependency on handcrafted designs limits the applicability of a given approach in time, as old methods need to be constantly adapted to novel backbones. Existing Neural Architecture Search (NAS) approaches cannot be directly applied to mitigate this issue, as they rely on labels that are not available in the UDA setting. Furthermore, most NAS methods search for full architectures, which precludes the use of pre-trained models, essential in a vast range of UDA settings for reaching SOTA results. To the best of our knowledge, no prior work has addressed these aspects in the context of NAS for UDA. Here we tackle both aspects with an Adversarial Branch Architecture Search for UDA (ABAS): i. we address the lack of target labels by a novel data-driven ensemble approach for model selection; and ii. we search for an auxiliary adversarial branch, attached to a pre-trained backbone, which drives the domain alignment. We extensively validate ABAS to improve two modern UDA techniques, DANN and ALDA, on three standard visual recognition datasets (Office31, Office-Home and PACS). In all cases, ABAS robustly finds the adversarial branch architectures and parameters which yield best performances.


翻译:不受监督的域域适应(UDA)是视觉识别中的一个关键问题,因为它能够连接不同的视觉领域,从而在现实世界中取得强劲的绩效。迄今为止,所有拟议的方法都依靠人的专门知识,将特定的UDA方法(例如DANN)手工调整到特定的主干结构(例如ResNet) 。对手工设计设计的依赖限制了特定方法在时间上的适用性,因为旧方法需要不断适应于新的主干线。现有的神经结构搜索(NAS)方法无法直接用于缓解这一问题,因为它们依赖UDA设置中不具备的标签。此外,大多数NAS方法都依靠人的专门知识来寻找完整的结构,这排除了预先训练的模型(例如DANNN)用于特定主干结构(例如ResNet ) 。根据我们的知识,以前没有在NAS 的范围内处理这些方面,因为旧方法需要不断适应于新的UDAA结构搜索(ABA):我们解决了缺乏目标标签的问题,而UDA设置新的数据-NBA结构搜索,我们用新的O-O-O级的S-S-SBA标准级升级的系统升级的系统升级工具,我们可以广泛选择。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
专知会员服务
61+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Arxiv
3+阅读 · 2018年12月29日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员