Learning to predict agent motions with relationship reasoning is important for many applications. In motion prediction tasks, maintaining motion equivariance under Euclidean geometric transformations and invariance of agent interaction is a critical and fundamental principle. However, such equivariance and invariance properties are overlooked by most existing methods. To fill this gap, we propose EqMotion, an efficient equivariant motion prediction model with invariant interaction reasoning. To achieve motion equivariance, we propose an equivariant geometric feature learning module to learn a Euclidean transformable feature through dedicated designs of equivariant operations. To reason agent's interactions, we propose an invariant interaction reasoning module to achieve a more stable interaction modeling. To further promote more comprehensive motion features, we propose an invariant pattern feature learning module to learn an invariant pattern feature, which cooperates with the equivariant geometric feature to enhance network expressiveness. We conduct experiments for the proposed model on four distinct scenarios: particle dynamics, molecule dynamics, human skeleton motion prediction and pedestrian trajectory prediction. Experimental results show that our method is not only generally applicable, but also achieves state-of-the-art prediction performances on all the four tasks, improving by 24.0/30.1/8.6/9.2%. Code is available at https://github.com/MediaBrain-SJTU/EqMotion.


翻译:学习预测智能体运动并对智能体间关系进行推理在许多应用中都至关重要。在运动预测任务中,保持欧几里德几何变换下的运动等变性和智能体交互的不变性是至关重要的基本原则,然而大多数现有方法忽略了此等变性和不变性。为了填补这一空白,我们提出了 EqMotion 模型,一种高效的等变运动预测模型,同时具备不变交互推理功能。为了实现运动等变性,我们提出了等变几何特征学习模块,通过专用的等变操作设计来学习欧几里德变换特征。为了推断智能体的交互关系,我们提出了不变交互推理模块,实现更加稳定的交互建模。为了进一步促进全面的运动特征,我们还提出了不变模式特征学习模块,学习一种不变的模式特征,与等变的几何特征协同增强网络表达能力。我们在四种不同情景下进行了实验:粒子动力学、分子动力学、人体骨骼运动预测和行人轨迹预测。实验结果表明,我们的方法不仅通用,而且在所有四项任务上都达到了最先进的预测性能,相对于先前方法提高了 24.0/30.1/8.6/9.2%。代码可在 https://github.com/MediaBrain-SJTU/EqMotion 获得。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【NeurIPS 2020】一种端到端全自由度抓取姿态估计网络简介
专知会员服务
19+阅读 · 2020年10月18日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
【泡泡一分钟】用于视角可变重定位的语义地图构建
泡泡机器人SLAM
19+阅读 · 2019年10月21日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
【NeurIPS 2020】一种端到端全自由度抓取姿态估计网络简介
专知会员服务
19+阅读 · 2020年10月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员