Stochastic and soft optimal policies resulting from entropy-regularized Markov decision processes (ER-MDP) are desirable for exploration and imitation learning applications. Motivated by the fact that such policies are sensitive with respect to the state transition probabilities, and the estimation of these probabilities may be inaccurate, we study a robust version of the ER-MDP model, where the stochastic optimal policies are required to be robust with respect to the ambiguity in the underlying transition probabilities. Our work is at the crossroads of two important schemes in reinforcement learning (RL), namely, robust MDP and entropy regularized MDP. We show that essential properties that hold for the non-robust ER-MDP and robust unregularized MDP models also hold in our settings, making the robust ER-MDP problem tractable. We show how our framework and results can be integrated into different algorithmic schemes including value or (modified) policy iteration, which would lead to new robust RL and inverse RL algorithms to handle uncertainties. Analyses on computational complexity and error propagation under conventional uncertainty settings are also provided.


翻译:由于这种政策对国家过渡概率十分敏感,对这些概率的估计可能不准确,我们研究ER-MDP模型的稳健版本,在这个模型中,要求随机最佳政策在基本的过渡概率的模糊性方面具有稳健性。我们的工作处于两个重要的强化学习计划(RL)的交叉点,这两个计划是:强健的MDP和恒正的MDP。我们显示,非机器人ER-MDP和强健的无正规MDP模型在我们的环境下也具有必要的特性,使强健的ER-MDP问题易于移动。我们表明,如何将我们的框架和结果纳入不同的算法计划,包括价值或(经修改的)政策循环,从而导致新的稳健的RL和逆流的RL算法,从而处理不确定性。我们还提供了在常规不确定性环境下对计算复杂性和传播错误的分析。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年8月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员