An $n$-dimensional source with memory is observed by $K$ isolated encoders via parallel channels, who compress their observations to transmit to the decoder via noiseless rate-constrained links while leveraging their memory of the past. At each time instant, the decoder receives $K$ new codewords from the observers, combines them with the past received codewords, and produces a minimum-distortion estimate of the latest block of $n$ source symbols. This scenario extends the classical one-shot CEO problem to multiple rounds of communication with communicators maintaining the memory of the past. We extend the Berger-Tung inner and outer bounds to the scenario with inter-block memory, showing that the minimum asymptotically (as $n \to \infty$) achievable sum rate required to achieve a target distortion is bounded by minimal directed mutual information problems. For the Gauss-Markov source observed via $K$ parallel AWGN channels, we show that the inner bound is tight and solve the corresponding minimal directed mutual information problem, thereby establishing the minimum asymptotically achievable sum rate. Finally, we explicitly bound the rate loss due to a lack of communication among the observers; that bound is attained with equality in the case of identical observation channels. The general coding theorem is proved via a new nonasymptotic bound that uses stochastic likelihood coders and whose asymptotic analysis yields an extension of the Berger-Tung inner bound to the causal setting. The analysis of the Gaussian case is facilitated by reversing the channels of the observers.


翻译:以美元为单位的记忆源为元元元元元元源由平行频道的孤立点记器观测到。 以美元为单位的孤立点记事器通过平行频道将观测结果压缩到解码器上, 以便通过无噪音、 节奏限制的链接将观测结果传送到解码器上, 同时利用对过去的记忆。 每次, 解码器都会从观察者那里收到新的代码字条, 将它们与过去收到的代码组合合并起来, 并生成对最新源代码中美元符号的最小扭曲估计值。 这个假设方案将典型的一次性首席执行官问题延伸到与保持过去记忆的通讯员的多轮沟通中。 我们用区间记忆来将贝格- 坦格内外部的内外部界限扩展到解码中, 显示最小的内圈内和外的内圈内连接线, 显示最小的内圈内连接线, 显示最小的内圈内线, 最小的内线线条, 从而通过区际记忆内端观察器确定最小的内线, 最小的内圈内端观察速度, 显示普通的内端观察速度是可实现的直截断的直路, 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Measure Estimation in the Barycentric Coding Model
Arxiv
0+阅读 · 2022年1月28日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2017年12月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员