In the 1970s, Gy\H{o}ri and Lov\'{a}sz showed that for a $k$-connected $n$-vertex graph, a given set of terminal vertices $t_1, \dots, t_k$ and natural numbers $n_1, \dots, n_k$ satisfying $\sum_{i=1}^{k} n_i = n$, a connected vertex partition $S_1, \dots, S_k$ satisfying $t_i \in S_i$ and $|S_i| = n_i$ exists. However, polynomial algorithms to actually compute such partitions are known so far only for $k \leq 4$. This motivates us to take a new approach and constrain this problem to particular graph classes instead of restricting the values of $k$. More precisely, we consider $k$-connected chordal graphs and a broader class of graphs related to them. For the first, we give an algorithm with $O(n^2)$ running time that solves the problem exactly, and for the second, an algorithm with $O(n^4)$ running time that deviates on at most one vertex from the given required vertex partition sizes.
翻译:1970年代,Gy\H{o}ri 和Lov\'{a}sz 显示,对于一个与美元连接的顶端分区$_1,\ dots, t_k$和自然数字$_1,\ dots, n_k$满足 $sum ⁇ i=1 ⁇ k}n_i=n美元,一个连接的顶端分区$_1,\ dots, S_k$满足 $_i\in S_i$ 和 $_S_i=n_i$。但是,一套实际计算这种分区的终端顶端螺旋形图只有$_1,\ dots, t_k$_k$1, t_k$1\k}n_ik}n_i=n%ss, sk$_k$, S_k$_i_i_i= n_i$。然而, i_i_i 存在一套超市算法,实际上只知道$@leq 4, 这促使我们采取新的办法, leqourax lax a lax laxal ex sudeal ex ex ex ex ex ex ex ex, ex legalquequest the ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex legolgolgolgleglex ex legleglegleglets