Spectral embedding finds vector representations of the nodes of a network, based on the eigenvectors of its adjacency or Laplacian matrix, and has found applications throughout the sciences. Many such networks are multipartite, meaning their nodes can be divided into groups and nodes of the same group are never connected. When the network is multipartite, this paper demonstrates that the node representations obtained via spectral embedding live near group-specific low-dimensional subspaces of a higher-dimensional ambient space. For this reason we propose a follow-on step after spectral embedding, to recover node representations in their intrinsic rather than ambient dimension, proving uniform consistency under a low-rank, inhomogeneous random graph model. Our method naturally generalizes bipartite spectral embedding, in which node representations are obtained by singular value decomposition of the biadjacency or bi-Laplacian matrix.
翻译:光谱嵌入发现一个网络的节点的矢量表示, 以其相邻或拉帕拉西亚矩阵的分流器为基础, 并在整个科学中找到了应用。 许多这样的网络是多部分的, 意思是它们的节点可以分为相同组别, 并且从未连接到同一组别中的节点。 当网络是多部分时, 本文表明通过光谱嵌入获得的节点表示在高维环境空间的小组特定低维次空间附近 。 为此, 我们提议在光谱嵌入后采取后续步骤, 以恢复其内在而非环境维度的节点表示, 证明在低层次、 不相容的随机图形模型下的一致性。 我们的方法自然地概括了双部分光谱嵌入, 其中的节点表示是通过比对齐或双层矩阵的奇值分解定位获得的。