Finding Nash equilibria in two-player zero-sum continuous games is a central problem in machine learning, e.g. for training both GANs and robust models. The existence of pure Nash equilibria requires strong conditions which are not typically met in practice. Mixed Nash equilibria exist in greater generality and may be found using mirror descent. Yet this approach does not scale to high dimensions. To address this limitation, we parametrize mixed strategies as mixtures of particles, whose positions and weights are updated using gradient descent-ascent. We study this dynamics as an interacting gradient flow over measure spaces endowed with the Wasserstein-Fisher-Rao metric. We establish global convergence to an approximate equilibrium for the related Langevin gradient-ascent dynamic. We prove a law of large numbers that relates particle dynamics to mean-field dynamics. Our method identifies mixed equilibria in high dimensions and is demonstrably effective for training mixtures of GANs.


翻译:在双玩者零和连续游戏中找到纳什平衡是机器学习的一个中心问题,例如培训GANs和稳健模型。纯纳什平衡的存在要求有通常无法满足的严格条件。混合的纳什平衡存在更为普遍,可能使用镜状下沉。然而,这一方法没有达到高度。为了解决这一限制,我们把混合策略作为粒子混合物,其位置和重量通过梯度下沉来更新。我们研究这种动态,把它作为具有瓦瑟斯坦-菲舍尔-拉奥指标的测量空间的交互梯度流动。我们建立全球趋同,为相关的Langevin梯度-斜度动态建立近似平衡。我们证明这是一个将粒子动态与中位场动态联系起来的大量法律。我们的方法在高维度上确定了混合的平衡,对于培训GAN混合物非常有效。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Higher Order Targeted Maximum Likelihood Estimation
Arxiv
0+阅读 · 2021年6月30日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员