We study the stochastic bilinear minimax optimization problem, presenting an analysis of the Stochastic ExtraGradient (SEG) method with constant step size, and presenting variations of the method that yield favorable convergence. We first note that the last iterate of the basic SEG method only contracts to a fixed neighborhood of the Nash equilibrium, independent of the step size. This contrasts sharply with the standard setting of minimization where standard stochastic algorithms converge to a neighborhood that vanishes in proportion to the square-root (constant) step size. Under the same setting, however, we prove that when augmented with iteration averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure. In the interpolation setting, we achieve an optimal convergence rate up to tight constants. We present numerical experiments that validate our theoretical findings and demonstrate the effectiveness of the SEG method when equipped with iteration averaging and restarting.
翻译:我们研究双线小型最大最大优化问题,分析Stochastic Extragradient (SEG) 方法,以恒定的步数大小进行分析,并展示产生有利趋同的方法的变异性。 我们首先注意到,基本 SEG 方法的最后一次迭代只与固定的Nash 平衡邻里签订合同,不取决于步数大小。 这与最小化标准设定的最小化标准形成鲜明对比,标准 Stochatic 算法与平方根( Constant) 步数大小相匹配。 然而,在同一背景下,我们证明,如果平均迭代增加,SEG可明显地与纳什平衡趋同,而这种比率通过纳入一个预定的重新启动程序可以更快地加速。 在内部设置中,我们实现了最优化的趋同率,达到紧固的常数。 我们提出数字实验,以证实我们的理论发现,并证明SEG方法在安装循环平均和重新开始时的有效性。