Heatmap-based regression overcomes the lack of spatial and contextual information of direct coordinate regression, and has revolutionized the task of face alignment. Yet it suffers from quantization errors caused by neglecting subpixel coordinates in image resizing and network downsampling. In this paper, we first quantitatively analyze the quantization error on benchmarks, which accounts for more than 1/3 of the whole prediction errors for state-of-the-art methods. To tackle this problem, we propose a novel Heatmap In Heatmap(HIH) representation and a coordinate soft-classification (CSC) method, which are seamlessly integrated into the classic hourglass network. The HIH representation utilizes nested heatmaps to jointly represent the coordinate label: one heatmap called integer heatmap stands for the integer coordinate, and the other heatmap named decimal heatmap represents the subpixel coordinate. The range of a decimal heatmap makes up one pixel in the corresponding integer heatmap. Besides, we transfer the offset regression problem to an interval classification task, and CSC regards the confidence of the pixel as the probability of the interval. Meanwhile, CSC applying the distribution loss leverage the soft labels generated from the Gaussian distribution function to guide the offset heatmap training, which makes it easier to learn the distribution of coordinate offsets. Extensive experiments on challenging benchmark datasets demonstrate that our HIH can achieve state-of-the-art results. In particular, our HIH reaches 4.08 NME (Normalized Mean Error) on WFLW, and 3.21 on COFW, which exceeds previous methods by a significant margin.
翻译:以 Heatma 为基础的回归克服了缺少直接协调回归的空间和背景信息, 并革命了面部调整的任务。 然而, 它由于在图像重整和网络下游取样中忽略子像素坐标而导致的量化错误而受到影响。 在本文中, 我们首先从数量上分析基准量的量化错误, 占最新方法整个预测误差的三分之一以上。 为了解决这个问题, 我们提议在 Heatmap( HIHH) 代表处采用一个新的热映射( Heatmap In Heatmap (HIH) 代表处, 以及协调软级分类( CSC) 方法。 HIH 代表处使用嵌入热映图来共同代表坐标标签 : 一个叫做整数热映的整数图代表整数坐标坐标坐标, 而另一个名为十进数热映射的数代表了亚数的坐标。 一位小数的热映射图在相应的整数数中使一个pixel 。 此外, 我们将回归问题转移到一个经典分类任务, 和 CSC 的软级缩略度分析结果的分布 。