We consider finite two-player normal form games with random payoffs. Player A's payoffs are i.i.d. from a uniform distribution. Given p in [0, 1], for any action profile, player B's payoff coincides with player A's payoff with probability p and is i.i.d. from the same uniform distribution with probability 1-p. This model interpolates the model of i.i.d. random payoff used in most of the literature and the model of random potential games. First we study the number of pure Nash equilibria in the above class of games. Then we show that, for any positive p, asymptotically in the number of available actions, best response dynamics reaches a pure Nash equilibrium with high probability.
翻译:玩家 A 的回报是来自统一的分布。 如果 p in [0, 1], 对于任何动作配置, 玩家 B 的回报与玩家 A 的回报相吻合, 概率是 p p, 并且是 i. d. d 的相同分布和概率是 1 - p。 这个模型将大多数文献中使用的 i. d 的 随机回报模式和随机潜在游戏模式相互调和。 首先, 我们研究上类游戏中纯 Nash 的平衡数量。 然后我们显示, 对于任何正的 P, 在可用动作的数量中, 最好的反应动态会非常可能达到纯的 Nash 平衡 。