Optimising the analysis of cardiac structure and function requires accurate 3D representations of shape and motion. However, techniques such as cardiac magnetic resonance imaging are conventionally limited to acquiring contiguous cross-sectional slices with low through-plane resolution and potential inter-slice spatial misalignment. Super-resolution in medical imaging aims to increase the resolution of images but is conventionally trained on features from low resolution datasets and does not super-resolve corresponding segmentations. Here we propose a semi-supervised multi-task generative adversarial network (Gemini-GAN) that performs joint super-resolution of the images and their labels using a ground truth of high resolution 3D cines and segmentations, while an unsupervised variational adversarial mixture autoencoder (V-AMA) is used for continuous domain adaptation. Our proposed approach is extensively evaluated on two transnational multi-ethnic populations of 1,331 and 205 adults respectively, delivering an improvement on state of the art methods in terms of Dice index, peak signal to noise ratio, and structural similarity index measure. This framework also exceeds the performance of state of the art generative domain adaptation models on external validation (Dice index 0.81 vs 0.74 for the left ventricle). This demonstrates how joint super-resolution and segmentation, trained on 3D ground-truth data with cross-domain generalization, enables robust precision phenotyping in diverse populations.
翻译:优化对心脏结构和功能的分析需要准确的形状和运动的3D表示。然而,心脏磁共振成像等技术通常仅限于获得通过平面分辨率低和可能存在间空间不匹配的相毗交叉切片。医学成像中的超分辨率的目的是提高图像的分辨率,但通常经过关于低分辨率数据集特征的训练,而不是超级解析相应的分块。我们在这里提议建立一个半监督的多任务组合式对抗网络(Gemini-GAN),利用高分辨率 3D cines和分层的地面真相对图像及其标签进行联合超级解析,同时使用一个不受监督的变异对立混合自动电码(V-AMA)用于连续的域适应。我们的拟议方法对两个跨国多种族人口(分别为1 331和205成年人)进行了广泛评价,从而改善了Dice交叉指数、噪音最高信号和结构相似指数测量的艺术方法状况。这个框架还超过了高分辨率分辨率3D的地面分辨率地面测量的外部模型。