We study random digraphs on sequences of expanders with bounded average degree and weak local limit. The threshold for the existence of a giant strongly connected component, as well as the asymptotic fraction of nodes with giant fan-in or giant fan-out are local, in the sense that they are the same for two sequences with the same weak local limit. The digraph has a bow-tie structure, with all but a vanishing fraction of nodes lying either in the unique strongly connected giant and its fan-in and fan-out, or in sets with small fan-in and small fan-out. All local quantities are expressed in terms of percolation on the limiting rooted graph, without any structural assumptions on the limit, allowing, in particular, for non tree-like limits. In the course of proving these results, we prove that for unoriented percolation, there is a unique giant above criticality, whose size and critical threshold are again local. An application of our methods shows that the critical threshold for bond percolation and random digraphs on preferential attachment graphs is $p_c=0$, with an infinite order phase transition at $p_c$.


翻译:我们研究关于具有平均约束度和微弱局部限制的扩张器序列的随机测算。 存在一个大强连接组件的阈值, 以及具有巨型扇形或大扇形断裂的结点的无症状部分是局部的, 也就是说, 两个序列和本地限制相同。 测算仪有一个弓领结构, 除了消失的节点部分外, 都位于一个独特的紧密相连的巨型及其扇形和扇形断裂中, 或位于小扇形和小扇形断裂中。 所有本地数量都以限制的根底图的渗透值表示, 且不包含任何结构上的假设, 特别允许非树型限制。 在证明这些结果的过程中, 我们证明对于不定向的透层, 有比临界值高的独有的巨型, 其大小和临界阈值再次是本地的。 我们方法的应用表明, 在优惠的附加图上, 粘合度和随机断层的临界阈值是 $p_ c=0, 在 $p_ c 上有一个无限的顺序转换阶段 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年11月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Properties of the After Kernel
Arxiv
0+阅读 · 2021年5月27日
Local, global and scale-dependent node roles
Arxiv
0+阅读 · 2021年5月26日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员