The secant method is a very effective numerical procedure used for solving nonlinear equations of the form $f(x)=0$. In a recent work [A. Sidi, Generalization of the secant method for nonlinear equations. {\em Appl. Math. E-Notes}, 8:115--123, 2008] we presented a generalization of the secant method that uses only one evaluation of $f(x)$ per iteration, and we provided a local convergence theory for it that concerns real roots. For each integer $k$, this method generates a sequence $\{x_n\}$ of approximations to a real root of $f(x)$, where, for $n\geq k$, $x_{n+1}=x_n-f(x_n)/p'_{n,k}(x_n)$, $p_{n,k}(x)$ being the polynomial of degree $k$ that interpolates $f(x)$ at $x_n,x_{n-1},\ldots,x_{n-k}$, the order $s_k$ of this method satisfying $1<s_k<2$. Clearly, when $k=1$, this method reduces to the secant method with $s_1=(1+\sqrt{5})/2$. In addition, $s_1<s_2<s_3<\cdots,$ such that and $\lim_{k\to\infty}s_k=2$. In this note, we study the application of this method to simple complex roots of a real or complex function $f(z)$. We show that the local convergence theory developed for real roots can be extended almost as is to complex roots, provided suitable assumptions and justifications are made. We illustrate the theory with two numerical examples.
翻译:秒法是一种非常有效的数字程序, 用于解决 f( x) = 0美元的窗体的非线性方程式。 在最近的一项工作中 [A. Sidi, 用于非线性方程式的脱线法的通用 。 math. E- Notes}, 8: 115-123, 2008] 我们展示了脱机法的概括化, 它只使用一次对 $( x) 的估量, 并且我们为它提供了一个与真实根有关的本地趋同理论。 对于每整价美元 $k$, 这个方法产生一个序列 $x_ n_ n 近似值到 $( x) 的实根值 。 对于 $nqqqq, $x_ n_ xx_ n_ f) / k}, $ (x_ n) 美元, k} k} (x) 美元, 美元是用来将 $( x) lax lax) 的硬值 和 $( x) lax) lax_ a. rexx rodeal_ as roups as a. rodeal_ max rode rod 。 max, lax ax ax ax ax, lax, rod rod rod rod the rods ax ax ax a_ rods a.