In this paper, we propose a subspace representation learning (SRL) framework to tackle few-shot image classification tasks. It exploits a subspace in local CNN feature space to represent an image, and measures the similarity between two images according to a weighted subspace distance (WSD). When K images are available for each class, we develop two types of template subspaces to aggregate K-shot information: the prototypical subspace (PS) and the discriminative subspace (DS). Based on the SRL framework, we extend metric learning based techniques from vector to subspace representation. While most previous works adopted global vector representation, using subspace representation can effectively preserve the spatial structure, and diversity within an image. We demonstrate the effectiveness of the SRL framework on three public benchmark datasets: MiniImageNet, TieredImageNet and Caltech-UCSD Birds-200-2011 (CUB), and the experimental results illustrate competitive/superior performance of our method compared to the previous state-of-the-art.
翻译:在本文中,我们提出一个子空间代表学习框架,以解决微小图像分类任务。它利用本地CNN特征空间的一个子空间代表图像,并根据加权子空间距离(WSD)测量两个图像之间的相似性。当每类有K图像时,我们开发了两类模板子空间,以汇总K光信息:原型子空间(PS)和有区别的子空间(DS)。根据SRL框架,我们扩展了从矢量到子空间代表的基于标准学习技术。虽然大多数以前采用的全球矢量代表工作,使用子空间代表可以有效地维护空间结构和图像中的多样性。我们在三个公共基准数据集上展示了SRL框架的有效性:MiniIMageNet、TieredImageNet和Caltech-UCSD Birds-200-2011(CUB),实验结果表明我们方法与先前的状态相比具有竞争力/超强性性能。