We study how to relate well-known hypergraph grammars based on the double pushout (DPO) approach and grammars over the hypergraph Lambek calculus HL (called HL-grammars). It turns out that DPO rules can be naturally encoded by types of HL using methods similar to those used by Kanazawa for multiplicative-exponential linear logic. In order to generalize his reasonings we extend the hypergraph Lambek calculus by adding the exponential modality, which results in a new calculus HMEL0; then we prove that any DPO grammar can be converted into an equivalent HMEL0-grammar. We also define the conjunctive Kleene star, which behaves similarly to this exponential modality, and establish a similar result. If we add neither the exponential modality nor the conjunctive Kleene star to HL, then we can still use the same encoding and show that any DPO grammar with a linear restriction on the length of derivations can be converted into an equivalent HL-grammar.
翻译:本研究探讨了如何将基于双推出(DPO)方法的知名超图语法与超图Lambek演算HL(称为HL-语法)之间建立关系。结果表明,可以通过类似Kanazawa用于乘积-指数线性逻辑的方法,使用HL类型自然地对DPO规则进行编码。为了推广他的推理,我们通过添加指数模态(导致新的演算HMEL0)扩展了超图Lambek演算。然后,我们证明了任何DPO语法都可以转换为等价的HMEL0-语法。我们还定义了合取Kleene star,它的行为类似于这种指数模态,并建立了类似的结果。如果在HL中既不添加指数模态也不添加合取Kleene star,则仍然可以使用相同的编码方法,并表明具有对导出长度的线性限制的DPO语法可以转换为等价的HL-语法。