Matrix-valued time series data are frequently observed in a broad range of areas and have attracted great attention recently. In this work, we model network effects for high dimensional matrix-valued time series data in a matrix autoregression framework. To characterize the potential heterogeneity of the subjects and handle the high dimensionality simultaneously, we assume that each subject has a latent group label, which enables us to cluster the subject into the corresponding row and column groups. We propose a group matrix network autoregression (GMNAR) model, which assumes that the subjects in the same group share the same set of model parameters. To estimate the model, we develop an iterative algorithm. Theoretically, we show that the group-wise parameters and group memberships can be consistently estimated when the group numbers are correctly or possibly over-specified. An information criterion for group number estimation is also provided to consistently select the group numbers. Lastly, we implement the method on a Yelp dataset to illustrate the usefulness of the method.
翻译:矩阵估计的时间序列数据经常在广泛的领域观测,最近引起极大注意。在这项工作中,我们在一个矩阵自动反向框架内对高维基矩阵估计的时间序列数据进行网络效应模型。为了描述对象的潜在异质并同时处理高维度,我们假设每个对象都有潜在的群落标签,使我们能够将对象分组到相应的行和列组中。我们建议了一个群群矩阵网络自动回归模型,假设同一组的主体共享相同的一组模型参数。为了估计模型,我们开发了一个迭接算法。理论上,我们表明,当群数正确或可能过份指定时,群群参数和组成员可以一致地估算。还提供了群数估计的信息标准,以一致地选择群号。最后,我们在Yelp数据集中采用了方法,以说明方法的有用性。