Crowdsourcing has emerged as an alternative solution for collecting large scale labels. However, the majority of recruited workers are not domain experts, so their contributed labels could be noisy. In this paper, we propose a two-stage model to predict the true labels for multicategory classification tasks in crowdsourcing. In the first stage, we fit the observed labels with a latent factor model and incorporate subgroup structures for both tasks and workers through a multi-centroid grouping penalty. Group-specific rotations are introduced to align workers with different task categories to solve multicategory crowdsourcing tasks. In the second stage, we propose a concordance-based approach to identify high-quality worker subgroups who are relied upon to assign labels to tasks. In theory, we show the estimation consistency of the latent factors and the prediction consistency of the proposed method. The simulation studies show that the proposed method outperforms the existing competitive methods, assuming the subgroup structures within tasks and workers. We also demonstrate the application of the proposed method to real world problems and show its superiority.


翻译:众包已成为收集大型标签的替代解决办法。然而,大多数招聘的工人不是域名专家,因此他们贡献的标签可能会吵闹。在本文中,我们提出一个两阶段模型,预测众包中多类分类任务的真正标签。在第一阶段,我们将观察到的标签配上潜在因素模型,并通过多子类类处罚将任务和工人的分组结构纳入其中。引入了针对具体集团的轮换,以使工人与不同任务类别工人协调,解决多类群包任务。在第二阶段,我们建议采取基于协调的办法,确定需要指定任务的高质量工人分组。理论上,我们显示了潜在因素的估计一致性和拟议方法的预测一致性。模拟研究表明,拟议方法超越了现有竞争方法,在任务和工人中假定分组结构。我们还展示了拟议方法在现实世界问题中的应用情况,显示了其优越性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月28日
Arxiv
0+阅读 · 2023年3月26日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员