We introduce a novel type of computationally efficient artificial neural network (ANN) called the rank similarity filter (RSF). RSFs can be used to both transform and classify nonlinearly separable datasets with many data points and dimensions. The weights of RSF are set using the rank orders of features in a data point, or optionally the 'confusion' adjusted ranks between features (determined from their distributions in the dataset). The activation strength of a filter determines its similarity to other points in the dataset, a measure related to cosine similarity. The activation of many RSFs maps samples into a new nonlinear space suitable for linear classification (the rank similarity transform (RST)). We additionally used this method to create the nonlinear rank similarity classifier (RSC), which is a fast and accurate multiclass classifier, and the nonlinear rank similarity probabilistic classifier (RSPC), which is an extension to the multilabel case. We evaluated the classifiers on multiple datasets and RSC was competitive with existing classifiers but with superior computational efficiency. Open-source code for RST, RSC and RSPC was written in Python using the popular scikit-learn framework to make it easily accessible. In future extensions the algorithm can be applied to specialised hardware suitable for the parallelization of an ANN (GPU) and a Spiking Neural Network (neuromorphic computing) with corresponding performance gains. This makes RSF a promising solution to the problem of efficient analysis of nonlinearly separable data.


翻译:我们引入了一种新型的计算效率高的人工神经网络(ANN),称为级相似过滤器(RSF)。 RSF可以用来转换和分类具有许多数据点和尺寸的非线性分解数据集。 RSF的权重是使用数据点的级级特征排序设定的,或者选用“混集”调整的特性之间的等级(根据数据集的分布而确定)。过滤器的激活力决定其与数据集中其它点的相似性,这是与cosine相似性相关的一项措施。许多 RSF 将样本映射成一个新的非线性空间,适合线性分类(级别相似性变换(RST ) 。我们还使用这种方法创建非线性级相似性等级分类(RSC),这是快速和准确的多级分类,是非线性级级级相近性分解(RSPC ) 的分解器与现有的书面分解器具有竞争力,但具有较高的计算效率。在 RS-C 内部内部数据分析中,O-r-r-r-rcal 直径直径直径直径直径对等的计算法框架,使 RST 的S-r-r-r-r-r-r-r-r-r-r-r-r-r-cal-r-r-cal-cal-r-r-r-r-r-r-r-r-r-r-r-r-c-c-c-cal-lical-cal-comal-sal-sal-al-code-al-al-al-al-sal-code-sal-co-co-co-s-s-s-s-s-s-s-s-s-s-sal-sal-sal-sal-sal-sal-sal-sal-li-coil-l-l-sal-sal-lvical-sal-sal-sal-sal-l-l-l-sal-l-l-l-l-l-sal-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
24+阅读 · 2021年1月25日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员