A key component of graph-based SLAM systems is the ability to detect loop closures in a trajectory to reduce the drift accumulated over time from the odometry. Most LiDAR-based methods achieve this goal by using only the geometric information, disregarding the semantics of the scene. In this work, we introduce PADLoC for joint loop closure detection and registration in LiDAR-based SLAM frameworks. We propose a novel transformer-based head for point cloud matching and registration, and to leverage panoptic information during training time. In particular, we propose a novel loss function that reframes the matching problem as a classification task for the semantic labels and as a graph connectivity assignment for the instance labels. During inference, PADLoC does not require panoptic annotations, making it more versatile than other methods. Additionally, we show that using two shared matching and registration heads with their source and target inputs swapped increases the overall performance by enforcing forward-backward consistency. We perform extensive evaluations of PADLoC on multiple real-world datasets demonstrating that it achieves state-of-the-art results. The code of our work is publicly available at http://padloc.cs.uni-freiburg.de.
翻译:基于图形的 SLAM 系统的一个关键组成部分是能够在轨迹中探测环状封闭,以减少从odomas 中逐渐积累的漂移。 多数基于 LiDAR 的方法仅使用几何信息, 而不考虑现场的语义。 在这项工作中, 我们引入 PADLOC, 用于在基于 LIDAR 的 SLAM 框架中联合环状封闭检测和注册。 我们建议使用基于图形的变压器头进行点云匹配和登记, 并在培训期间利用光学信息。 特别是, 我们提议了一个新的损失函数, 将匹配问题重新设定为语义标签的分类任务, 以及实例标签的图形连接任务。 在推断期间, PADLOC 不需要全局性说明, 使其比其他方法更具有功能性。 此外, 我们用两个共享的匹配和注册头及其源和目标输入进行互换, 藉着前向后向一致性来提高总体性。 我们对多个真实世界数据集进行了广泛的评估, 以显示它达到了状态, 和实例标签的图象连接性任务代码可以公开查阅 。 http://croburburg 。