In the paper we propose a direct method for recovering the Sturm-Liouville potential from the Weyl-Titchmarsh $m$-function given on a countable set of points. We show that using the Fourier-Legendre series expansion of the transmutation operator integral kernel the problem reduces to an infinite linear system of equations, which is uniquely solvable if so is the original problem. The solution of this linear system allows one to reconstruct the characteristic determinant and hence to obtain the eigenvalues as its zeros and to compute the corresponding norming constants. As a result, the original inverse problem is transformed to an inverse problem with a given spectral density function, for which the direct method of solution from arXiv:2010.15275 is applied. The proposed method leads to an efficient numerical algorithm for solving a variety of inverse problems. In particular, the problems in which two spectra or some parts of three or more spectra are given, the problems in which the eigenvalues depend on a variable boundary parameter (including spectral parameter dependent boundary conditions), problems with a partially known potential and partial inverse problems on quantum graphs.


翻译:在本文中,我们提出了一个直接方法,从Weyl-Titchmarsh-Titchmarsh在一组可计数点上给出的Sturm-Liouville潜力中恢复Sturm-Liouville潜力,在一组可计数的点上,我们提出一个直接的方法。我们表明,使用变异操作器整体内核的Fourier-Legendre系列扩展,问题会降为无限的线性方程式系统,如果最初的问题是独有的,那么这个线性系统的解决方案就使得人们能够重建特性的决定因素,从而获得零和相应的规范常数。因此,最初的反向问题变成了一个特定光谱密度函数的反向问题,为此采用了ArXiv:2010.152.75的直接解决方案方法。拟议的方法导致一种高效的数字算法,解决各种各样的反向问题。特别是给出两个光谱或三个或三个以上光谱的某些部分的问题,这种元值依赖于一个可变的边界参数(包括光谱谱系依赖的边界条件),其部分潜在和反面的图表存在问题。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年3月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员