Endoscopic Ultrasound-Fine Needle Aspiration (EUS-FNA) is used to examine pancreatic cancer. EUS-FNA is an examination using EUS to insert a thin needle into the tumor and collect pancreatic tissue fragments. Then collected pancreatic tissue fragments are then stained to classify whether they are pancreatic cancer. However, staining and visual inspection are time consuming. In addition, if the pancreatic tissue fragment cannot be examined after staining, the collection must be done again on the other day. Therefore, our purpose is to classify from an unstained image whether it is available for examination or not, and to exceed the accuracy of visual classification by specialist physicians. Image classification before staining can reduce the time required for staining and the burden of patients. However, the images of pancreatic tissue fragments used in this study cannot be successfully classified by processing the entire image because the pancreatic tissue fragments are only a part of the image. Therefore, we propose a DeformableFormer that uses Deformable Convolution in MetaFormer framework. The architecture consists of a generalized model of the Vision Transformer, and we use Deformable Convolution in the TokenMixer part. In contrast to existing approaches, our proposed DeformableFormer is possible to perform feature extraction more locally and dynamically by Deformable Convolution. Therefore, it is possible to perform suitable feature extraction for classifying target. To evaluate our method, we classify two categories of pancreatic tissue fragments; available and unavailable for examination. We demonstrated that our method outperformed the accuracy by specialist physicians and conventional methods.


翻译:内窥镜超声-细针穿刺(EUS-FNA)用于检查胰腺癌。EUS-FNA是一种使用EUS将细针插入肿瘤并收集胰腺组织碎片的检查方法。收集的胰腺组织碎片随后被染色以分类它们是胰腺癌还是其他类型的胰腺疾病。但是,染色和视觉检查耗费时间。此外,如果不能对染色后的胰腺组织碎片进行检查,则必须在另一天再次进行收集。因此,我们的目的是从未染色的图像中分类出它们是否可以用于检查,并超过专科医师的视觉分类准确性。在染色之前进行图像分类可以减少染色所需的时间和患者的负担。但是,本研究中使用的胰腺组织碎片的图像无法通过处理整个图像来成功分类,因为胰腺组织碎片只是图像的一部分。因此,我们提出了DeformableFormer,它在MetaFormer框架中使用可变形卷积。该架构由Vision Transformer的通用模型组成,我们在TokenMixer部分中使用Deformable Convolutiopn。与现有方法相比,我们的DeformableFormer可以通过Deformable Convolution更加局部和动态地进行特征提取。因此,它可以执行适合分类目标的特征提取。为了评估我们的方法,我们对胰腺组织碎片的两个类别进行分类:可供检查和不可用于检查。我们证明了我们的方法优于专家和常规方法的准确性。

0
下载
关闭预览

相关内容

视觉Transformer预训练模型的胸腔X线影像多标签分类
专知会员服务
11+阅读 · 2022年7月29日
专知会员服务
123+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员