This paper resolves the open question of designing near-optimal algorithms for learning imperfect-information extensive-form games from bandit feedback. We present the first line of algorithms that require only $\widetilde{\mathcal{O}}((XA+YB)/\varepsilon^2)$ episodes of play to find an $\varepsilon$-approximate Nash equilibrium in two-player zero-sum games, where $X,Y$ are the number of information sets and $A,B$ are the number of actions for the two players. This improves upon the best known sample complexity of $\widetilde{\mathcal{O}}((X^2A+Y^2B)/\varepsilon^2)$ by a factor of $\widetilde{\mathcal{O}}(\max\{X, Y\})$, and matches the information-theoretic lower bound up to logarithmic factors. We achieve this sample complexity by two new algorithms: Balanced Online Mirror Descent, and Balanced Counterfactual Regret Minimization. Both algorithms rely on novel approaches of integrating \emph{balanced exploration policies} into their classical counterparts. We also extend our results to learning Coarse Correlated Equilibria in multi-player general-sum games.
翻译:本文解决了从贝叶斯博弈树不完美信息中的有限积分反馈中设计接近最优算法的开放问题。我们提出了第一种算法线,这些算法只需要 $\widetilde{\mathcal {O}}((XA+YB)/\varepsilon^2)$ 次游戏,就可以在双人零和游戏中找到一个 $\varepsilon$-近似的 Nash 平衡,其中 $X,Y$ 是信息集的数量,$A,B$ 是两个玩家的动作数量。这将最佳已知采样复杂度 $\widetilde{\mathcal {O}}((X^2A+Y^2B)/\varepsilon^2)$ 与 $\widetilde{\mathcal{O}}(\max\{X,Y\})$ 的因子相比,提高了一倍,可匹配信息理论下限,达到了对数因子。我们通过两种新算法实现了这种样本复杂度:平衡联机镜像下降和平衡的反事实遗憾最小化。两种算法都依赖于将\emph{平衡探索策略}集成到其经典对应物中的新方法。我们还将我们的结果扩展到学习多人一般和博弈的粗略相关均衡。