Parallel training of neural networks at scale is challenging due to significant overheads arising from communication. Recently, deep learning researchers have developed a variety of pruning algorithms that are capable of pruning (i.e. setting to zero) 80-90% of the parameters in a neural network to yield sparse subnetworks that equal the accuracy of the unpruned parent network. In this work, we propose a novel approach that exploits these sparse subnetworks to optimize the memory utilization and communication in two popular algorithms for parallel deep learning namely -- data and inter-layer parallelism. We integrate our approach into AxoNN, a highly scalable framework for parallel deep learning that relies on data and inter-layer parallelism, and demonstrate the reduction in communication times and memory utilization. On 512 NVIDIA V100 GPUs, our optimizations reduce the memory consumption of a 2.7 billion parameter model by 74%, and the total communication times by 40%, thus providing an overall speedup of 34% over AxoNN, 32% over DeepSpeed-3D and 46% over Sputnik, a sparse matrix computation baseline.


翻译:大规模神经网络平行培训具有挑战性,因为通信带来的大量间接费用。最近,深层学习研究人员开发了各种运行算法,这些算法可以运行(即将神经网络参数的80-90%设定为零)80-90%,以产生与未运行的父网络精度相等的稀薄子网络。在这项工作中,我们提出了一个新颖的方法,利用这些稀疏的子网络优化记忆利用和通信,在两个常用的平行深层学习算法 -- -- 数据和跨层平行学习 -- -- 即数据和跨层平行学习。我们将我们的方法纳入AxONN,这是一个高度可扩展的平行深层学习框架,依靠数据和跨层平行平行平行学习,并展示通信时间和记忆利用的减少。关于512 NVIDIA V100 GPU,我们的优化将27亿参数模型的记忆消耗减少74%,通信总时间减少40 %,从而提供了比AxONNN(34%)、DeepSpeed-3D(32%)和Sputnik(Sputnik)(一个分散的矩阵计算基线)的总体速度加快34%。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年6月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员