Click-through rate prediction plays an important role in the field of recommender system and many other applications. Existing methods mainly extract user interests from user historical behaviors. However, behavioral sequences only contain users' directly interacted items, which are limited by the system's exposure, thus they are often not rich enough to reflect all the potential interests. In this paper, we propose a novel method, named Dynamic Sequential Graph Learning (DSGL), to enhance users or items' representations by utilizing collaborative information from the local sub-graphs associated with users or items. Specifically, we design the Dynamic Sequential Graph (DSG), i.e., a lightweight ego subgraph with timestamps induced from historical interactions. At every scoring moment, we construct DSGs for the target user and the candidate item respectively. Based on the DSGs, we perform graph convolutional operations iteratively in a bottom-up manner to obtain the final representations of the target user and the candidate item. As for the graph convolution, we design a Time-aware Sequential Encoding Layer that leverages the interaction time information as well as temporal dependencies to learn evolutionary user and item dynamics. Besides, we propose a Target-Preference Dual Attention Layer, composed of a preference-aware attention module and a target-aware attention module, to automatically search for parts of behaviors that are relevant to the target and alleviate the noise from unreliable neighbors. Results on real-world CTR prediction benchmarks demonstrate the improvements brought by DSGL.


翻译:点击率预测在推荐者系统和许多其他应用领域起着重要作用。 现有方法主要从用户历史行为中提取用户兴趣。 但是, 行为序列只包含用户直接互动的项目, 受系统曝光的限制, 因此它们往往不够丰富, 无法反映所有潜在利益。 在本文中, 我们提出了一个创新方法, 名为动态序列图学习( DSGL ), 利用与用户或项目相关的本地子图提供的合作信息, 增强用户或项目表达方式。 具体地说, 我们设计动态序列图( DSG ), 即使用历史互动产生的时间戳的轻量自负子图。 在每一个评分时刻, 我们为目标用户和候选项目分别建立DSG, 因而不够丰富。 根据 DSG, 我们以自下而上的方式进行图式革命操作, 以获得目标用户和候选项目的最后表达方式。 至于图形变色图, 我们设计了一个时间序列序列图图图图图图图图图图, 即一个通过历史序列序列图显示的比重图, 将互动目标搜索目标的自我缩缩缩缩略略图, 成为了Sqolimleasimalimalimalimalimalalalalalimliforgressimal 模模块 。

0
下载
关闭预览

相关内容

【2021新书】Python深度学习,316页pdf
专知会员服务
243+阅读 · 2021年5月21日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
53+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉领域顶会CVPR 2018 接受论文列表
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2021年6月27日
Arxiv
5+阅读 · 2021年4月21日
VIP会员
相关资讯
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉领域顶会CVPR 2018 接受论文列表
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员