Gradient Boosting Machines (GBMs) have demonstrated remarkable success in solving diverse problems by utilizing Taylor expansions in functional space. However, achieving a balance between performance and generality has posed a challenge for GBMs. In particular, gradient descent-based GBMs employ the first-order Taylor expansion to ensure applicability to all loss functions, while Newton's method-based GBMs use positive Hessian information to achieve superior performance at the expense of generality. To address this issue, this study proposes a new generic Gradient Boosting Machine called Trust-region Boosting (TRBoost). In each iteration, TRBoost uses a constrained quadratic model to approximate the objective and applies the Trust-region algorithm to solve it and obtain a new learner. Unlike Newton's method-based GBMs, TRBoost does not require the Hessian to be positive definite, thereby allowing it to be applied to arbitrary loss functions while still maintaining competitive performance similar to second-order algorithms. The convergence analysis and numerical experiments conducted in this study confirm that TRBoost is as general as first-order GBMs and yields competitive results compared to second-order GBMs. Overall, TRBoost is a promising approach that balances performance and generality, making it a valuable addition to the toolkit of machine learning practitioners.


翻译:梯度提升机(GBMs)通过在函数空间中利用泰勒展开,在解决各种问题方面取得了显着的成功。然而,在性能和通用性之间取得平衡对于GBMs是一个挑战。尤其是,基于梯度下降的GBMs使用一阶泰勒展开,以确保适用于所有损失函数,而基于牛顿法的GBMs使用正定的黑塞矩阵信息以换取性能优越性。为了解决这个问题,这项研究提出了一种新的通用梯度提升机——TRBoost。在每次迭代中,TRBoost使用约束二次模型来近似目标并应用信赖域算法来解决它并获得新的学习器。与基于牛顿法的GBMs不同,TRBoost不需要黑塞矩阵为正定,因此它可以应用于任意损失函数,同时仍保持与二阶算法相似的竞争性能。本研究进行的收敛性分析和数值实验证实,TRBoost与一阶GBMs一样通用,与二阶GBMs相比具有竞争力的结果。总的来说,TRBoost是一种平衡性能和通用性的有前途的方法,使其成为机器学习实践者工具箱中宝贵的补充。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
52+阅读 · 2020年9月7日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员