Two widely-used computational paradigms for sublinear algorithms are using linear measurements to perform computations on a high dimensional input and using structured queries to access a massive input. Typically, algorithms in the former paradigm are non-adaptive whereas those in the latter are highly adaptive. This work studies the fundamental search problem of \textsc{element-extraction} in a query model that combines both: linear measurements with bounded adaptivity. In the \textsc{element-extraction} problem, one is given a nonzero vector $\mathbf{z} = (z_1,\ldots,z_n) \in \{0,1\}^n$ and must report an index $i$ where $z_i = 1$. The input can be accessed using arbitrary linear functions of it with coefficients in some ring. This problem admits an efficient nonadaptive randomized solution (through the well known technique of $\ell_0$-sampling) and an efficient fully adaptive deterministic solution (through binary search). We prove that when confined to only $k$ rounds of adaptivity, a deterministic \textsc{element-extraction} algorithm must spend $\Omega(k (n^{1/k} -1))$ queries, when working in the ring of integers modulo some fixed $q$. This matches the corresponding upper bound. For queries using integer arithmetic, we prove a $2$-round $\widetilde{\Omega}(\sqrt{n})$ lower bound, also tight up to polylogarithmic factors. Our proofs reduce to classic problems in combinatorics, and take advantage of established results on the {\em zero-sum problem} as well as recent improvements to the {\em sunflower lemma}.


翻译:用于亚线性算法的两种广泛使用的计算模式正在使用线性测量来进行高维输入的计算, 并使用结构化查询来获取大规模输入。 通常, 前模式的算法不适应性强, 而后一种模式的算法适应性强。 这项工作研究一个查询模式中\ textsc{ 元素- Extraction} 的基本搜索问题, 两者结合: 线性测量与约束性适应性相结合。 在\ textscral { 元素- Extraction} 问题中, 一个是给非零矢量 $\ mathbf{z} = (z_ 1,\ ldot,z_n) = (z_ n) = n = = = 0. 1, 而后者的算法则是 $% 。 这个问题承认一种有效的非适应性随机性解决方案( 通过已知的 $\ell_ yell_ 0 minal} 和 高效的确定性解算性解决方案( 通过硬性搜索 ) 。 我们证明, ral_ trendational_ a crow liental track roal roal rod roup roup 。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
85+阅读 · 2020年12月5日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【泡泡一分钟】基于建筑立面对称性的语义分析(3dv-56)
泡泡机器人SLAM
3+阅读 · 2018年3月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【泡泡一分钟】基于建筑立面对称性的语义分析(3dv-56)
泡泡机器人SLAM
3+阅读 · 2018年3月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员