We introduce the problem of unitarization. Unitarization is the problem of taking $k$ input quantum circuits that produce orthogonal states from the all $0$ state, and create an output circuit implementing a unitary with its first $k$ columns as those states. That is, the output circuit takes the $k$th computational basis state to the state prepared by the $k$th input circuit. We allow the output circuit to use ancilla qubits initialized to $0$. But ancilla qubits must always be returned to $0$ for any input. The input circuits may use ancilla qubits, but we are only guaranteed the they return ancilla qubits to $0$ on the all $0$ input. The unitarization problem seems hard if the output states are neither orthogonal to or in the span of the computational basis states that need to map to them. In this work, we approximately solve this problem in the case where input circuits are given as black box oracles by probably finding an approximate basis for our states. This method may be more interesting than the application. This technique is a sort of quantum analogue of Gram-Schmidt orthogonalization for quantum states. Specifically, we find an approximate basis in polynomial time for the following parameters. Take any natural $n$, $k = O\left(\frac{\ln(n)}{\ln(\ln(n))}\right)$, and $\epsilon = 2^{-O(\sqrt{\ln(n)})}$. Take any $k$ input quantum states, $(|\psi_i \rangle)_{i\in [k]}$, on polynomial in $n$ qubits prepared by quantum oracles, $(V_i)_{i \in [k]}$ (that we can control call and control invert). Then there is a quantum circuit with polynomial size in $n$ with access to the oracles $(V_i)_{i \in [k]}$ that with at least $1 - \epsilon$ probability, computes at most $k$ circuits with size polynomial in $n$ and oracle access to $(V_i)_{i \in [k]}$ that $\epsilon$ approximately computes an $\epsilon$ approximate orthonormal basis for $(|\psi_i \rangle)_{i\in [k]}$.
翻译:我们引入了独资化问题。 单位化是一个问题, 问题在于从所有 美元状态中取出美元输入量电路, 产生美元正方产值的美元, 并创建一个输出电路, 以第一个 美元值的列实施一个单一。 也就是说, 输出电路将美元计算基状态引入由 美元输入电路准备的状态。 我们允许输出电路使用初始化为 $。 但是, 辛基电路必须总是返回到 美元的任何投入。 输入电路可能会使用 美元方产值的美元, 但是我们只能保证在 美元投入上返回 美元 。 如果输出状态与 美元输入电路或计算基的状态不相近, 独有独有独有独有的问题。 在这项工作中, 任何输入电路都以黑箱或触地标来解决这个问题, 可能会找到一个近值基 美元基 。 这个方法比直数基础更令人感兴趣, 。 直数 直数 直数 基 。 直数 直数 直数 基 。 直数 基, 直数 直数 直数 。 直数 基 直 直 直 。 直 直 。 直 基 直 。