The Kaczmarz method for solving a linear system $Ax = b$ interprets such a system as a collection of equations $\left\langle a_i, x\right\rangle = b_i$, where $a_i$ is the $i-$th row of $A$, then picks such an equation and corrects $x_{k+1} = x_k + \lambda a_i$ where $\lambda$ is chosen so that the $i-$th equation is satisfied. Convergence rates are difficult to establish. Assuming the rows to be normalized, $\|a_i\|_{\ell^2}=1$, Strohmer \& Vershynin established that if the order of equations is chosen at random, $\mathbb{E}~ \|x_k - x\|_{\ell^2}$ converges exponentially. We prove that if the $i-$th row is selected with likelihood proportional to $\left|\left\langle a_i, x_k \right\rangle - b_i\right|^{p}$, where $0<p<\infty$, then $\mathbb{E}~\|x_k - x\|_{\ell^2}$ converges faster than the purely random method. As $p \rightarrow \infty$, the method de-randomizes and explains, among other things, why the maximal correction method works well. We empirically observe that the method computes approximations of small singular vectors of $A$ as a byproduct.
翻译:Kaczmarz 解决线性系统的方法 $Ax = b$ = b$ 的 Kaczmarz 解析线性系统的方法, 诸如 $\ left\ langle a_ i, x\right\ rangle = b_ i$, $_ 美元是 $A 的 美元行, 美元是 $- 美元行的 美元行, 然后选择这样的方程并纠正 $x@ k+ 1} = x_ k +\ lambda a_ 美元, 这样可以满足 $- lambda a_ 的方程式 。 很难确定调调调速率。 假设行要正常, $_ i_ lix ell_ 美元, Strohrmer_ Vershynnin 确定, 如果随机选择方程, $\\\ k_ xxxxxxx ral_ ral_ rentral_ ral_ ral ral_ 美元, ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx