Tusn\'ady's problem asks to bound the discrepancy of points and axis-parallel boxes in $\mathbb{R}^d$. Algorithmic bounds on Tusn\'ady's problem use a canonical decomposition of Matou\v{s}ek for the system of points and axis-parallel boxes, together with other techniques like partial coloring and / or random-walk based methods. We use the notion of \emph{shallow cell complexity} and the \emph{shallow packing lemma}, together with the chaining technique, to obtain an improved decomposition of the set system. Coupled with an algorithmic technique of Bansal and Garg for discrepancy minimization, which we also slightly extend, this yields improved algorithmic bounds on Tusn\'ady's problem. For $d\geq 5$, our bound matches the lower bound of $\Omega(\log^{d-1}n)$ given by Matou\v{s}ek, Nikolov and Talwar [IMRN, 2020] -- settling Tusn\'ady's problem, upto constant factors. For $d=2,3,4$, we obtain improved algorithmic bounds of $O(\log^{7/4}n)$, $O(\log^{5/2}n)$ and $O(\log^{13/4}n)$ respectively, which match or improve upon the non-constructive bounds of Nikolov for $d\geq 3$. Further, we also give improved bounds for the discrepancy of set systems of points and polytopes in $\mathbb{R}^d$ generated via translations of a fixed set of hyperplanes. As an application, we also get a bound for the geometric discrepancy of anchored boxes in $\mathbb{R}^d$ with respect to an arbitrary measure, matching the upper bound for the Lebesgue measure, which improves on a result of Aistleitner, Bilyk, and Nikolov [MC and QMC methods, \emph{Springer, Proc. Math. Stat.}, 2018] for $d\geq 4$.
翻译:Tusn\\ aphy 问题要求将点和轴边框的偏差以 $\ mathb{R ⁇ d$绑定。 Tusn\ ady 问题上的算法约束使用 点和轴边框系统的直角分解法, 以及部分颜色和/ 或随机行走法等其他技术。 我们使用 $mph{ xllow 单元格复杂性} 和 memph{ ballow back lemma} 的概念, 连同链路技术, 来改善设置系统的分解。 结合Bansal 和 Garg 的算法技术来尽量减少差异, 我们也稍微扩展, 这样可以改善 点的算法约束 Tusn\ 问题。 对于 $=qetq 5, 我们的分解到 美元( log_ d) 和 美元值的分解码 。