Tusn\'ady's problem asks to bound the discrepancy of points and axis-parallel boxes in $\mathbb{R}^d$. Algorithmic bounds on Tusn\'ady's problem use a canonical decomposition of Matou\v{s}ek for the system of points and axis-parallel boxes, together with other techniques like partial coloring and / or random-walk based methods. We use the notion of \emph{shallow cell complexity} and the \emph{shallow packing lemma}, together with the chaining technique, to obtain an improved decomposition of the set system. Coupled with an algorithmic technique of Bansal and Garg for discrepancy minimization, which we also slightly extend, this yields improved algorithmic bounds on Tusn\'ady's problem. For $d\geq 5$, our bound matches the lower bound of $\Omega(\log^{d-1}n)$ given by Matou\v{s}ek, Nikolov and Talwar [IMRN, 2020] -- settling Tusn\'ady's problem, upto constant factors. For $d=2,3,4$, we obtain improved algorithmic bounds of $O(\log^{7/4}n)$, $O(\log^{5/2}n)$ and $O(\log^{13/4}n)$ respectively, which match or improve upon the non-constructive bounds of Nikolov for $d\geq 3$. Further, we also give improved bounds for the discrepancy of set systems of points and polytopes in $\mathbb{R}^d$ generated via translations of a fixed set of hyperplanes. As an application, we also get a bound for the geometric discrepancy of anchored boxes in $\mathbb{R}^d$ with respect to an arbitrary measure, matching the upper bound for the Lebesgue measure, which improves on a result of Aistleitner, Bilyk, and Nikolov [MC and QMC methods, \emph{Springer, Proc. Math. Stat.}, 2018] for $d\geq 4$.


翻译:Tusn\\ aphy 问题要求将点和轴边框的偏差以 $\ mathb{R ⁇ d$绑定。 Tusn\ ady 问题上的算法约束使用 点和轴边框系统的直角分解法, 以及部分颜色和/ 或随机行走法等其他技术。 我们使用 $mph{ xllow 单元格复杂性} 和 memph{ ballow back lemma} 的概念, 连同链路技术, 来改善设置系统的分解。 结合Bansal 和 Garg 的算法技术来尽量减少差异, 我们也稍微扩展, 这样可以改善 点的算法约束 Tusn\ 问题。 对于 $=qetq 5, 我们的分解到 美元( log_ d) 和 美元值的分解码 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
做目标检测,这一篇就够了!2019最全目标检测指南
机器学习算法与Python学习
30+阅读 · 2019年9月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
做目标检测,这一篇就够了!2019最全目标检测指南
机器学习算法与Python学习
30+阅读 · 2019年9月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员