This paper concerns realizing highly efficient information-theoretic robot exploration with desired performance in complex scenes. We build a continuous lightweight inference model to predict the mutual information (MI) and the associated prediction confidence of the robot's candidate actions which have not been evaluated explicitly. This allows the decision-making stage in robot exploration to run with a logarithmic complexity approximately, this will also benefit online exploration in large unstructured, and cluttered places that need more spatial samples to assess and decide. We also develop an objective function to balance the local optimal action with the highest MI value and the global choice with high prediction variance. Extensive numerical and dataset simulations show the desired efficiency of our proposed method without losing exploration performance in different environments. We also provide our open-source implementation codes released on GitHub for the robot community.
翻译:本文涉及在复杂场景中以预期的性能实现高效的信息理论机器人探索; 我们建立一个连续的轻量级推论模型,以预测相互信息(MI)以及尚未明确评估的机器人候选行动的相关预测信心; 这使机器人探索的决策阶段能够以大致的对数复杂性运行,这也有利于大型无结构的在线探索,以及需要更多空间样本评估和决定的杂乱地点。 我们还开发了一个客观功能,以平衡当地最佳行动与最高MI值和全球选择与高预测差异之间的平衡。 广泛的数字和数据集模拟显示我们拟议方法的预期效率,同时不在不同环境中丧失探索性能。 我们还为机器人界提供了在GitHub上发布的开源执行代码。