Recognizing already explored places (a.k.a. place recognition) is a fundamental task in Simultaneous Localization and Mapping (SLAM) to enable robot relocalization and loop closure detection. In topological SLAM the recognition takes place by comparing a signature (or feature vector) associated to the current node with the signatures of the nodes in the known map. However, as the number of nodes increases, matching the current node signature against all the existing ones becomes inefficient and thwarts real-time navigation. In this paper we propose a novel approach to pre-select a subset of map nodes for place recognition. The map nodes are clustered during exploration and each cluster is associated with a region. The region labels become the prediction targets of a deep neural network and, during navigation, only the nodes associated with the regions predicted with high probability are considered for matching. While the proposed technique can be integrated in different SLAM approaches, in this work we describe an effective integration with RTAB-Map (a popular framework for real-time topological SLAM) which allowed us to design and run several experiments to demonstrate its effectiveness. All the code and material from the experiments will be available online at https://github.com/MI-BioLab/region-learner.


翻译:承认已经探索过的位置(a.k.a.place recognition)是同步本地化和绘图(SLAM)的一项基本任务,以便能够对机器人重新定位和环闭探测。在地形学SLAM中,识别的方式是将与当前节点有关的签名(或特性矢量)与已知地图中节点的签名进行比较,然而,随着节点数目的增加,将当前的节点签名与所有现有节点匹配成为效率低下并阻碍实时导航。在本文中,我们提出了预先选择一组地图节点进行定位的新办法。地图节点是在勘探期间分组的,每个组群与一个区域相关。区域标签成为深神经网络的预测目标,在导航期间,只考虑将与预测概率高的区域相关的节点加以匹配。虽然拟议的技术可以纳入不同的SLAM方法,但我们描述了与RTAB-Map(实时顶层SLMM的流行框架)的有效整合,使我们能够设计和进行若干实验,以展示其有效性。所有MAMI/R 的代码和材料将可在网上进行。</s>

0
下载
关闭预览

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员