Power delivery network (PDN) design is a nontrivial, time-intensive, and iterative task. Correct PDN design must account for considerations related to power bumps, currents, blockages, and signal congestion distribution patterns. This work proposes a machine learning-based methodology that employs a set of predefined PDN templates. At the floorplan stage, coarse estimates of current, congestion, macro/blockages, and C4 bump distributions are used to synthesize a grid for early design. At the placement stage, the grid is incrementally refined based on more accurate and fine-grained distributions of current and congestion. At each stage, a convolutional neural network (CNN) selects an appropriate PDN template for each region on the chip, building a safe-by-construction PDN that meets IR drop and electromigration (EM) specifications. The CNN is initially trained using a large synthetically-created dataset, following which transfer learning is leveraged to bridge the gap between real-circuit data (with a limited dataset size) and synthetically-generated data. On average, the optimization of the PDN frees thousands of routing tracks in congestion-critical regions, when compared to a globally uniform PDN, while staying within the IR drop and EM limits.
翻译:电源输送网络(PDN)设计是一项非边际、时间密集和迭接的任务。 正确的 PDN设计必须考虑到与电波、电流、阻塞和信号阻塞分布模式有关的考虑。 这项工作提出了一种基于机器的学习方法, 使用一套预先定义的 PDN 模板。 在楼层规划阶段, 对电流、 拥塞、 宏/ 阻塞和 C4 冲击分布进行粗略的估计, 用于合成一个网格, 以便早期设计 。 在布置阶段, 电网必须根据当前和拥堵的更准确和精细的分布, 逐步改进。 在每个阶段, 共变神经网络( CNN) 为每个区域选择一个适当的 PDN 模板, 建立一套符合 IR 下降和电路变电路规格的安全的 PDN 。 CN 最初培训使用一个大型合成生成数据集, 之后, 传输学习可以弥补实际电路数据( 数据大小有限) 和合成生成数据之间的差距。 在平均情况下, 将PD 路路段优化到全球范围内的固定状态, 。