Voltage Fault Injection (VFI), also known as power glitching, has proven to be a severe threat to real-world systems. In VFI attacks, the adversary disturbs the power-supply of the target-device forcing the device to illegitimate behavior. Various countermeasures have been proposed to address different types of fault injection attacks at different abstraction layers, either requiring to modify the underlying hardware or software/firmware at the machine instruction level. Moreover, only recently, individual chip manufacturers have started to respond to this threat by integrating countermeasures in their products. Generally, these countermeasures aim at protecting against single fault injection (SFI) attacks, since Multiple Fault Injection (MFI) is believed to be challenging and sometimes even impractical. In this paper, we present {\mu}-Glitch, the first Voltage Fault Injection (VFI) platform which is capable of injecting multiple, coordinated voltage faults into a target device, requiring only a single trigger signal. We provide a novel flow for Multiple Voltage Fault Injection (MVFI) attacks to significantly reduce the search complexity for fault parameters, as the search space increases exponentially with each additional fault injection. We evaluate and showcase the effectiveness and practicality of our attack platform on four real-world chips, featuring TrustZone-M: The first two have interdependent backchecking mechanisms, while the second two have additionally integrated countermeasures against fault injection. Our evaluation revealed that {\mu}-Glitch can successfully inject four consecutive faults within an average time of one day. Finally, we discuss potential countermeasures to mitigate VFI attacks and additionally propose two novel attack scenarios for MVFI.


翻译:电压电压喷射器(VFI)也被称为电源闪烁,它证明是对现实世界系统的一种严重威胁。在VFI的攻击中,对手扰乱了目标装置的动力供应,迫使该装置成为非法行为。在不同的抽象层提出了各种对策,处理不同类型的过失喷射攻击,要么需要在机器指令层面修改基本硬件或软件/硬件。此外,直到最近,单个芯片制造商才开始通过将应对措施纳入其产品来应对这一威胁。一般而言,这些对策旨在防止单一过错注入(SFI)攻击,因为多错注入(MFI)被认为具有挑战性,有时甚至不切实际。在本文件中,我们提出了各种反过失注入在不同抽象层进行不同种类的电磁性喷射(VFI)攻击的电源袭击。不仅需要将一个单一触发信号,而且仅需要第二个触发信号。我们为多错喷射(MVFIFI)攻击提供了一种新型的流,以大幅降低对断层攻击的搜索复杂性,因为多错入(VFIFI)被认为具有挑战性,而我们又可以成功地在两个空间定位平台内部进行两次搜索。</s>

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员