In this paper we present a new model for the generation of orientation preference maps in the primary visual cortex (V1), considering both orientation and scale features. First we undertake to model the functional architecture of V1 by interpreting it as a principal fiber bundle over the 2-dimensional retinal plane by introducing intrinsic variables orientation and scale. The intrinsic variables constitute a fiber on each point of the retinal plane and the set of receptive profiles of simple cells is located on the fiber. Each receptive profile on the fiber is mathematically interpreted as a rotated Gabor function derived from an uncertainty principle. The visual stimulus is lifted in a 4-dimensional space, characterized by coordinate variables, position, orientation and scale, through a linear filtering of the stimulus with Gabor functions. Orientation preference maps are then obtained by mapping the orientation value found from the lifting of a noise stimulus onto the 2-dimensional retinal plane. This corresponds to a Bargmann transform in the reducible representation of the $\text{SE}(2)=\mathbb{R}^2\times S^1$ group. A comparison will be provided with a previous model based on the Bargman transform in the irreducible representation of the $\text{SE}(2)$ group, outlining that the new model is more physiologically motivated. Then we present simulation results related to the construction of the orientation preference map by using Gabor filters with different scales and compare those results to the relevant neurophysiological findings in the literature.


翻译:在本文中,我们提出一个新的模型,用于在初级视觉皮层(V1)中绘制定向偏好图,同时考虑到方向和比例特点。首先,我们承诺通过引入内在变量方向和比例,将V1的功能结构作为2维视端平面上的主要纤维捆绑,在2维视端平面上引入内在变量方向和尺度,以此作为V1的功能结构的模型。内在变量构成视端平面每个点的纤维,而简单的单元格的一套可接受性剖面位于纤维上。纤维上的每个可接受性剖面在数学上被解释为从不确定原则衍生出来的旋转加博函数。视觉刺激在四维空间中被解除,其特点是协调变量、位置、方向和尺度,通过用加博功能对刺激功能进行线性过滤。然后,通过绘制从噪音刺激向2维度视面视端平面平面平面平面平面平面平面平面平面平面平面图中发现的方向值。这相当于在 $ text{Sephrebbbbb{R2\tibrbles{Stimetialtialtialtimetimetalblightptal rolight group 上,将用先前的模型进行对比。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员