Let $f(t,y,y')=\sum_{i=0}^n a_i(t,y)y'^i=0$ be an irreducible first order ordinary differential equation with polynomial coefficients. Eremenko in 1998 proved that there exists a constant $C$ such that every rational solution of $f(t,y,y')=0$ is of degree not greater than $C$. Examples show that this degree bound $C$ depends not only on the degrees of $f$ in $t,y,y'$ but also on the coefficients of $f$ viewed as the polynomial in $t,y,y'$. In this paper, we show that if $f$ satisfies $deg(f,y)<deg(f,y')$ or $\max_{i=0}^n \{deg(a_i,y)-2(n-i)\}>0 $ then the degree bound $C$ only depends on the degrees of $f$ in $t,y,y'$, and furthermore we present an explicit expression for $C$ in terms of the degrees of $f$ in $t,y,y'$.
翻译:Letf(t),y,y', y', supp ⁇ i=0美元 un a_i(t,y)y'i=0美元是一个不可减少的第一顺序普通差价方和多元系数。Eremenko在1998年证明,存在一个不变的美元C美元,因此,美元(t,y,y')=0美元的任何合理解决办法都不大于美元。例子表明,这种受约束的美元不仅取决于美元(t,y,y)y y' y=0美元的程度,而且取决于美元(f)的多元系数。在本文件中,我们表明,如果美元(f) $(f) y) <deg(f) $(y) 或$(maxci) =0美元(a) y(y)(n)-n-i) $(n)nC美元,那么受约束的美元则仅取决于美元($,y,y,y,y,y,y'美元,以及美元,我们以美元为明确的货币表示。