Existing work on scene flow estimation focuses on autonomous driving and mobile robotics, while automated solutions are lacking for motion in nature, such as that exhibited by debris flows. We propose DEFLOW, a model for 3D motion estimation of debris flows, together with a newly captured dataset. We adopt a novel multi-level sensor fusion architecture and self-supervision to incorporate the inductive biases of the scene. We further adopt a multi-frame temporal processing module to enable flow speed estimation over time. Our model achieves state-of-the-art optical flow and depth estimation on our dataset, and fully automates the motion estimation for debris flows. The source code and dataset are available at project page.
翻译:现有的场景流估计工作主要关注自动驾驶和移动机器人,但对自然环境中所展示的运动,如泥石流,缺乏自动化解决方案。我们提出了DEFLOW,一个用于3D泥石流运动估计的模型以及一个刚刚捕捉的数据集。我们采用了一种新颖的多级传感器融合架构和自监督方法,以整合场景的归纳偏差。我们进一步采用了一个多帧时空处理模块,使得在时间上能够进行流速估计。我们的模型在我们的数据集上实现了最先进的光流和深度估计,并完全自动化了泥石流的运动估计。源代码和数据集可在项目主页上获取。