In this paper, we scrutinize the effectiveness of various clustering techniques, investigating their applicability in Cultural Heritage monitoring applications. In the context of this paper, we detect the level of decomposition and corrosion on the walls of Saint Nicholas fort in Rhodes utilizing hyperspectral images. A total of 6 different clustering approaches have been evaluated over a set of 14 different orthorectified hyperspectral images. Experimental setup in this study involves K-means, Spectral, Meanshift, DBSCAN, Birch and Optics algorithms. For each of these techniques we evaluate its performance by the use of performance metrics such as Calinski-Harabasz, Davies-Bouldin indexes and Silhouette value. In this approach, we evaluate the outcomes of the clustering methods by comparing them with a set of annotated images which denotes the ground truth regarding the decomposition and/or corrosion area of the original images. The results depict that a few clustering techniques applied on the given dataset succeeded decent accuracy, precision, recall and f1 scores. Eventually, it was observed that the deterioration was detected quite accurately.
翻译:在本文中,我们审视了各种集群技术的有效性,调查了这些技术在文化遗产监测应用中的适用性;在本文中,我们利用超光谱图像检测罗得圣尼古拉堡墙壁上的分解和腐蚀程度;对总共6种不同的集群方法进行了评价,共涉及14个不同的分解超光谱图像;本研究中的实验设置涉及K- means、光谱、中位、DBSCAN、Birch和光学算法;对于其中每一种技术,我们通过使用Calinski-Harabasz、Davies-Bouldin索引和Silhouette值等性能衡量标准来评估其性能;在这种方法中,我们通过将这些组合方法的结果与一组说明原始图像的分解和/或腐蚀区域地面真相的一组附加图象进行比较,从而评估了这些组合方法的结果;结果显示,在给定数据集上应用的一些集技术取得了相当准确的准确性、精确性、回顾和f1分数。最后,我们发现,对变差进行了精确的检测。