In the problem of selecting variables in a multivariate linear regression model, we derive new Bayesian information criteria based on a prior mixing a smooth distribution and a delta distribution. Each of them can be interpreted as a fusion of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Inheriting their asymptotic properties, our information criteria are consistent in variable selection in both the large-sample and the high-dimensional asymptotic frameworks. In numerical simulations, variable selection methods based on our information criteria choose the true set of variables with high probability in most cases.
翻译:在选择多变量线性回归模型中的变量问题时,我们根据先前混合的平滑分布和三角洲分布得出新的贝耶斯信息标准,每一种标准都可以被解释为Akaike信息标准和BIC信息标准的混合。在继承其无症状特性时,我们的信息标准在大抽样和高维无症状框架中的变量选择是一致的。在数字模拟中,基于我们信息标准的变量选择方法可以被解释为Akaike信息标准和BIC的混合。在多数情况下,我们的信息标准在大抽样和高维无症状框架中的变量选择都是一致的。在数字模拟中,基于我们信息标准的变量选择方法选择真实的变量集,其概率很高。