As few-shot object detectors are often trained with abundant base samples and fine-tuned on few-shot novel examples,the learned models are usually biased to base classes and sensitive to the variance of novel examples. To address this issue, we propose a meta-learning framework with two novel feature aggregation schemes. More precisely, we first present a Class-Agnostic Aggregation (CAA) method, where the query and support features can be aggregated regardless of their categories. The interactions between different classes encourage class-agnostic representations and reduce confusion between base and novel classes. Based on the CAA, we then propose a Variational Feature Aggregation (VFA) method, which encodes support examples into class-level support features for robust feature aggregation. We use a variational autoencoder to estimate class distributions and sample variational features from distributions that are more robust to the variance of support examples. Besides, we decouple classification and regression tasks so that VFA is performed on the classification branch without affecting object localization. Extensive experiments on PASCAL VOC and COCO demonstrate that our method significantly outperforms a strong baseline (up to 16\%) and previous state-of-the-art methods (4\% in average). Code will be available at: \url{https://github.com/csuhan/VFA}


翻译:由于少发天体探测器往往经过大量基础样本的培训,并经过微小的新例子的细微调整,所学的模型通常偏向于基础类,对新例子的差异敏感。为了解决这一问题,我们提出一个包含两个新特征聚合办法的元学习框架。更准确地说,我们首先提出一个分类分类分类汇总方法,其中查询和支持特性可以不分类别加以汇总。不同类别之间的相互作用鼓励类类级的认知代表性,减少基类和新颖类之间的混淆。根据CAAA,我们然后提议一种变异性特征聚合(VFA)方法,该方法将支持实例编码成等级支持特征聚合的特征集合特征特征。我们使用变式自动编码来估计等级分布和样本差异,而这种分类和支持特性的分布则更加可靠。此外,我们分解分类和回归任务,使VFA在分类分支上进行,而不影响对象的本地化。关于PACAL VOC和COCO的大规模实验表明,我们的方法大大超越了等级级支持特性集合的特性特性特性特征。我们使用一个强大的基准(向前16号) 。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
26+阅读 · 2020年2月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员